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Many luminous astrophysical systems are 
capable of producing strong shocks. 

Non-thermal emission is seen in:

● AGNs
● Supernova Remnants
● X-ray binaries
● The outflows of Tidal 

Disruption Events
● Gamma-Ray Bursts
● Radio-supernovae
● Cosmic rays

LIGO/VIRGO NS mergers
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LIGO/VIRGO NS mergers
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How does particle 
acceleration in shocks 

change with 𝚪 ??



Need to capture the interaction between 
the fields & the particles self-consistently

Particle-in-cell codes are the ideal tool to 
study this problem. We used Tristan-MP.

We can also address this 
question from ‘first-principles’ 
by means of self-consistent 

simulations.



Relativistic quasi-parallel shocks

Efficient energy exchange between 
electrons and ions in the upstream

Preheats electrons to significant 
fraction of ion energy. 
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2D PIC



Non-Relativistic quasi-parallel shocks

Density in a quasi-parallel M=50 
Hybrid simulation.

Cosmic rays stream far from the shock, evacuate underdense 
cavities via a current-driven instability (

).



Non-Relativistic quasi-parallel shocks

Density in a quasi-parallel M=50 
Hybrid simulation.
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Hybrid 1D-PIC
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PIC simulations of quasi-parallel 
shocks with Alfvenic Mach number 
~10-20
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Mildly-Relativistic quasi-parallel shocks

𝞂 = 0.01

Simulation set-up

 θ
B

 = 10o



Mildly-Relativistic quasi-parallel shocks



Mildly-Relativistic quasi-parallel shocks

Fully kinetic simulations 
that capture the 
high-energy ion-driven 
turbulence discovered 
using Hybrid simulations. 

Caprioli & Spitkovsky 2014



ϵ
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~ 10-3

Only a small fraction of the 
shock’s energy is in 

non-thermal electrons.  

Spectra:

ϵ
p 

~ 0.1



Non-resonant ion 
instability creates 

large scale 
transverse fields 
that are good at 

scattering 
particles back 

towards the shock.

Fields:
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Do the filaments matter?
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The filamentation 
creates regions of 
quasi-parallel and 
quasi-perp fields, 

making it easier to 
inject electrons.

Filaments:



Simulation Set-up
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Subluminal

Superluminal



Subluminal

Superluminal
But mildly relativistic 
shocks more likely to 

be subluminal

Differences in superluminal 
and subluminal orientation 
similar to what was found 
for relativistic shocks.



How does ϵe change with 
Lorentz factor of shock?

𝞂 = 0.01;   θ
B

 = 0

Simulation set-up



All velocities show 
the filamentation 
instability.

Preliminary
Mildly-Relativistic

parallel shocks



Prelim
inary

We see evidence for 
a large increase in ϵ

e 
 

as v->c.  

Caveat: ϵ
e 

likely depends on M
A

, T, θ
B

... Shock Speed is 
not only important parameter

Mildly-Relativistic
parallel shocks



……We have examined particle acceleration in magnetized mildly relativistic shocks 
fully kinetic PIC simulations. 

Conclusions:

……Quasi-parallel shocks are efficient ion and inefficient electron accelerators. 
Quasi-perp, superluminal, shocks do not produce power-law distributions.

……We used unprecedentedly large boxes to capture non-resonant ion driven 
turbulence in quasi-parallel shocks. 

……Preliminary simulations of magnetized quasi-parallel shocks show that ϵ
e 

 increases 
from ~10-3 to ~a few x 10-2  as the shock velocity goes from 0.33c to 0.95c, while ϵ

p
 

remains ~constant.

……Large scale transverse upstream fields scatter particles back towards the shock, 
and filaments at the shock front allow electrons to return upstream.

……A varying ϵ
e 

with velocity may be directly tested through modeling observations 
of objects that pass through the mildly relativistic regime -- e.g. GRB afterglows at 
late times.


